Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

Version 1 Next »

The Apache Hadoop S3 connector "S3A" works with Content Gateway S3. Here is a small but complete example, using a single-node hadoop system that can be easily run on any docker server. It shows bucket listing, distcp, and a simple mapreduce job against a bucket in a Caringo domain.

  1. Create a container using the docker image from https://github.com/sequenceiq/hadoop-docker

    $ docker run -it sequenceiq/hadoop-docker:2.7.0 /etc/bootstrap.sh -bash

  2. At the container's shell prompt, add the path containing the "hadoop" binary:

    PATH=/usr/local/hadoop/bin:$PATH

  3. Copy the jar's needed for the S3A libraries:

    cd /usr/local/hadoop-2.7.0/share/hadoop/tools/lib/ && cp -p hadoop-aws-2.7.0.jar aws-java-sdk-1.7.4.jar jackson-core-2.2.3.jar jackson-databind-2.2.3.jar jackson-annotations-2.2.3.jar /usr/local/hadoop-2.7.0/share/hadoop/hdfs/lib/

  4. Make sure your domain (mydomain.example.com) and bucket (hadoop-test) have been created and that your /etc/hosts or DNS are configured to resolve http://mydomain.example.com/hadoop-test to your cloudgateway server's S3 port.

  5. Create an S3 token

    curl -i -u USERNAME -X POST --data-binary '' -H 'X-User-Secret-Key-Meta: secret' -H 'X-User-Token-Expires-Meta: +90' http://mydomain.example.com/.TOKEN/

    HTTP/1.1 201 Created
    ...
    Token e181dcb1d01d5cf24f76dd276b95a638 issued for USERNAME in [root] with secret secret

  6. List your bucket (should be empty)

    hadoop fs -Dfs.s3a.access.key=e181dcb1d01d5cf24f76dd276b95a638 -Dfs.s3a.secret.key=secret -Dfs.s3a.endpoint=mydomain.example.com -ls s3a://hadoop-test/

    Note: error ls: `s3a://hadoop-test': No such file or directory is expected if bucket is empty or if you forget the trailing slash.

  7. Copy the sample "input" files into your bucket:
    hadoop distcp -Dfs.s3a.access.key=e181dcb1d01d5cf24f76dd276b95a638 -Dfs.s3a.secret.key=secret -Dfs.s3a.endpoint=jam.cloud.caringo.com input s3a://hadoop-test/input
    
  8. Verify with "-ls" or in Content Gateway ui that the bucket now has ~31 streams.
    hadoop fs -Dfs.s3a.access.key=e181dcb1d01d5cf24f76dd276b95a638 -Dfs.s3a.secret.key=secret -Dfs.s3a.endpoint=jam.cloud.caringo.com -ls s3a://hadoop-test/input/
    Found 31 items
    ...
  9. Run the sample mapreduce job that grep's the input files
    hadoop jar /usr/local/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.0.jar grep -Dfs.s3a.access.key=e181dcb1d01d5cf24f76dd276b95a638 -Dfs.s3a.secret.key=secret -Dfs.s3a.endpoint=mydomain.example.com s3a://hadoop-test/input s3a://hadoop-test/output 'dfs[a-z.]+'
    
  10. Display the results in the "output" file
    hadoop fs -Dfs.s3a.access.key=e181dcb1d01d5cf24f76dd276b95a638 -Dfs.s3a.secret.key=secret -Dfs.s3a.endpoint=mydomain.example.com -cat s3a://hadoop-test/output/part-r-00000
    6	dfs.audit.logger
    4	dfs.class
    3	dfs.server.namenode.
    2	dfs.period
    2	dfs.audit.log.maxfilesize
    ...

PS: https://wiki.apache.org/hadoop/AmazonS3 makes a good point:

S3 is not a filesystem. The Hadoop S3 filesystem bindings make it pretend to be a filesystem, but it is not. It can act as a source of data, and as a destination -though in the latter case, you must remember that the output may not be immediately visible.



  • No labels